

Quality Mator... for the

Water Quality Report 2023

Mohawk Valley Water Authority Water Quality Department 1 Kennedy Plaza Utica, New York 13502

Phone: (315) 792-0301

TABLE OF CONTENTS

WELCOME	3
HOW WE TREAT YOUR DRINKING WATER	4
THE TEAM THAT DISTRIBUTES WATER TO YOUR DOOR	9
WATER SYSTEM MAINTENANCE AND CAPITAL IMPROVEMENT SUMMARY	9
WATER QUALITY DEPARTMENT	
WATER QUALITY REGULATIONS	
WHAT CHEMICAL COMPOUNDS AND BACTERIA DO WE FIND IN THE DRINKING WATER?	
2023 ANALYTICAL RESULTS	17
CRYPTOSPORIDIUM/GIARDIA INFORMATION	
CRYPTOSPORIDIOSIS: FACT SHEET	
THE LEAD AND COPPER RULE	
BEST PRACTICES TO REDUCE RISKS OF LEAD EXPOSURE IN DRINKING WATER	
UNREGULATED CONTAMINANT MONITORING RULE	
PREMISE PLUMBING ISSUES	
THE BOTTLED WATER ALTERNATIVE	
DRINKING WATER QUALITY REPORT FOR 2023	

WELCOME

Dear Customer:

The Mohawk Valley Water Authority (MVWA) is pleased to present to you our annual water quality report. Today, there is a heightened public awareness concerning our natural resources and environment and the quality of drinking water is understandably a primary interest. We remain a committed partner within the drinking water industry in evaluating new technologies and innovative practices, striving to better serve our growing customer base. MVWA is committed to ensuring we deliver quality water to your taps while maintaining responsible use of this sustainable resource.

This report includes information on the tests we perform on our water both to comply with State and Federal regulations and to test for some compounds which are not regulated. Also addressed are some of the most commonly asked questions by our customers. We have also included information on bottled water, lead and copper, *Cryptosporidium*, and other topics.

The Authority is committed to meeting all standards and to produce high quality water for you. Since the opening of our water treatment plant in December of 1992, the quality of the water has vastly improved. Unfortunately, MVWA had a violation of the Stage 2 Disinfection Byproducts Rule at one site near the former county airport in Oriskany in May of 2023. This issue was brought back into compliance by our August 2023 required sampling. We continually strive to educate our customers on the balance between advanced technologies affording lower detection limits versus the meaning of a detection. While "absolute zero" is the public's perception of safe water, it must be understood that number simply does not exist. As improved methodologies for analytical testing continues to lower detection levels, analytes previously reported as non-detectable may now have a value associated with them. This does not necessarily equate to an increased risk to public health. Further, costs associated with treatment and technologies to meet these low levels can be extremely high, and a cost-benefit analysis must be conducted to demonstrate that the financial burdens provide an added benefit to water customers.

The MVWA is confident that we will continue to produce high quality water for you at reasonable costs. We encourage you to review this detailed report and forward any comments or concerns to the following:

Philip A. Tangorra Director of Water Quality Mohawk Valley Water Authority 1 Kennedy Plaza Utica, New York 13502

HOW WE TREAT YOUR DRINKING WATER

SOURCE

Pure Adirondack Mountain Water

North of the Mohawk and Hudson Rivers is the largest public parkland in the forty-eight contiguous United States: the Adirondack Park. Covering one-third of New York State - and containing an area approximately the size of the state of Vermont - the 6-million-acre Adirondack Park contains thousands of acres of mountain and forestland. Over half of this land is protected by New York State legislation, which assures it will remain forever wild.

The Mohawk Valley Water Authority watershed can be found within this land. The 374 square mile watershed is 89% forested, and much of it falls within the Adirondack Park. The water we drink gathers in the streams and creeks of this remote Adirondack mountain watershed, far from settled areas and farmland, limiting the chance of pollution from people or agricultural runoff. These tributaries drain into the West Canada Creek, which carries our water to the New York State - owned Hinckley Reservoir, our water-supply reservoir. It is here that our water begins its journey through the pipes of the Mohawk Valley Water Authority system to thousands of homes and businesses.

Hinckley Reservoir Watershed

FILTRATION

In 1986, the New York State Department of Health (NYSDOH) directed the City of Utica to construct a water treatment plant to ensure quality drinking water. After four years of testing, planning, and design, construction on an \$18 million dollar drinking water treatment facility began in 1990 at a site in the Town of Trenton. The facility became operational in December 1992. The 32 million gallon per day (MGD) treatment plant is a direct filtration facility with upflow clarifiers. This process filters out most of the natural organic water and 99.9% of bacteria from the water. Also, due to the elimination of most of the organic matter in our water there is less taste, color, and odor.

The water must now be disinfected through a process of chlorination. With less organic matter in the water, there is minimal chemical reaction with the chlorine. Once the water is chlorinated, any remaining potentially harmful bacteria are destroyed. MVWA keeps a small residual amount of chlorine in the distribution system to act as a protective barrier against contamination.

CHLORINATION AND THMs

Most public water systems have been chlorinated since the turn of the century, when it was recognized that waterborne diseases could be eliminated, or at least greatly reduced, by disinfection. The first city to use chlorination in the United States was Jersey City, NJ, when Dr. John Leal began adding sodium hypochlorite to the water supply in 1908. The effect of chlorination on waterborne disease is easily demonstrated using death rate statistics for typhoid fever, a waterborne disease caused by the bacteria *Salmonella typhi*, as death rates for typhoid fever were virtually eliminated as communities began to chlorinate the drinking water. Ironically, while chlorination protects us from bacterial disease, it caused a problem of another nature.

Our Adirondack water is rich with the organic elements pure mountain streams are made of silt, tree twigs, bark, and leaves. When chlorine mixes with the naturally decaying organic matter found in most lakes and streams, compounds of trihalomethanes (THMs) are created. Above certain concentrations, THMs are carcinogenic. The treatment plant, through filtration, has eliminated the problem with THMs.

In 2012, the regulations on THMs were again tightened. In anticipation of the changes, MVWA spent several years and significant dollars to find an appropriate solution to remain compliant. Granular activated carbon (GAC) was determined to be the best available technology and since 2011, MVWA has annually swapped out its filter media with new GAC to remain within regulatory limits. The bar graph that follows demonstrates how MVWA has remained in compliance as regulations related to disinfection byproducts and trihalomethanes have evolved and become more stringent over the past 40 years.

Average annual concentrations of all regulatory samples collected per year for trihalomethanes.

RESULT - QUALITY

Mohawk Valley Water Authority provides its customers with drinking water that meets the demands of the community and the standards of the federal, state, and local government. The water system, its processes, and most importantly, our staff of nearly 85 employees provide assurance that the water we serve is of sufficient quantity and superior quality. Through routine preventative maintenance, online and daily laboratory analysis, an active capital program, and continuing education opportunities for our staff, MVWA is truly invested in the quality of water we provide. The challenges the drinking water industry faces continue to change, and MVWA is well-positioned to adapt and respond to continue the high level of service and water quality that our customers deserve.

SOURCE OF SUPPLY

Adirondack Watershed - 374 square miles

Hinckley Reservoir

WATER TREATMENT PLANT CAPACITY

32 million gallons per day maximum

18 million gallons per day average

RAW WATER PIPELINES

36" and 24"

PROCESS

Hinckley Water Treatment Plant, circa 2000.

Rapid mix - in-line static mixer Contact basins - 2 basins - 50' x 150' Absorption clarifiers - 4 clarifiers - 626 sq. ft. each Filters - 4 filters - 1248 sq. ft. each Backwash tank - 769,000 gallon Clearwells - 2 tanks – 2.2 million gallons Waste disposal - 3 lagoons, 6.2 acres

CHEMICAL FEED

Soda ash Alum Polymer Chlorine Lime Fluoride

SITE SIZE

62.6 acres total

THE TEAM THAT DISTRIBUTES WATER TO YOUR DOOR

The Mohawk Valley Water Authority operates and maintains a distribution system of more than 650 miles of pipeline ranging in size from 3/4" to 36" in diameter. The system also includes approximately 8,500 valves, 3,600 hydrants, and 38,975 service connections that are all maintained by Water Authority forces.

In any given year, our crews respond to an average of 300 leaks. The MVWA's repair crew is on call 24-hours a day to respond to leaks, water quality inquires, and other emergencies.

During normal working hours, crews are involved in preventative maintenance programs on valves and hydrants to ensure that the system operates efficiently. In the Water Quality Lab, technicians analyze samples from the source, treatment plant, and distribution systems to evaluate the treatment process and overall system quality each day. In 2023, nearly 28,000 tests were performed in the laboratory on the water that we serve.

WATER SYSTEM MAINTENANCE AND CAPITAL IMPROVEMENT SUMMARY

WATER SYSTEM MAINTENANCE AND CAPITAL IMPROVEMENT SUMMARY

The Engineering, Distribution and Maintenance Departments continued to implement major physical and operational improvements throughout the Regional Transmission and Distribution System and Facilities in 2023. Nearly \$8,100,000 in improvements were completed with another \$17,900,000 in various stages of design or construction. The Departments were able to accomplish these projects while managing inflationary pressures such as escalating materials prices, labor costs, and delayed deliveries related to supply chain disruptions.

MVWA utilizes system management tools to improve water service reliability and ensure sustainability throughout the Regional Water System. In 2022 and 2023, MVWA enlisted a consultant engineer firm to upgrade and modernized the systemwide all pipe hydraulic model. The model can also be utilized for water quality modeling. Real-time remote monitoring of pressure, flow and water quality parameters is accomplished utilizing the MVWA SCADA System. A systemwide replacement program of the SCADA system (electronic remote monitoring) was completed at the Water Treatment Plant in 2021 and the remainder of the distribution system assets were upgraded this year. GIS/Mapping system and annual Leak Detection Survey allows the tracking and reporting of water accountability for reducing unaccounted-for water.

The Departments are also responsible for preparing, bidding, and administering routine annual

contracts for commodities and services including: Water Main Materials, Leak Detection, Generator Maintenance, Fence Repairs, Tree Removals, Backflow Testing, Asphalt Paving and Concrete repairs and numerous other System needs. There is also an annual Tank Diving contract that permits the cleaning and inspection of the tanks while they remain in service thus eliminating lengthy service interruptions.

In 2022, a rollout of remote pressure monitoring devices (42 total) in PRV chambers was progressed throughout the year. These remote pressure monitoring devices give MVWA additional "eyes-and-ears" throughout the system to help respond quickly to system problems. All remote pressure monitoring devices are compatible with and able to be viewed in the new SCADA system. Repairs and upgrades to the chambers to improve access and safe working conditions also continue.

In 2022 and 2023, the MVWA owned Water Treatment Plant was upgraded to convert the disinfection process, from a chlorine gas fed system to liquid sodium hypochlorite fed treatment system. These improvements helped reduce the hazards associated within the transportation, storage and use of chlorine gas and provided a more efficient means for the treatment of raw water into potable water.

Department staff are active members of several professional associations and their governing Boards. MVWA staff remained engaged and continue to serve as leaders in the drinking water sector.

PROJECTS AND OPERATIONS IN FY 2023 INCLUDED:

FACILITIES – PUMPSTATIONS AND WATER STORAGE TANKS

A major project in 2022 and 2023 was the conversion from gaseous chlorine to liquid sodium hypochlorite as the primary disinfection system at the WTP. This >\$2-million-dollar project eliminates the risks associated with storage and use of chlorine gas at our facility. The switch from gas to a temporary hypochlorite system was seamless while building and process improvements were made to the permanent system. Final completion is scheduled for Spring 2024.

The Gilbert Tank Demolition Project involved the removal of an existing water tower located adjacent to Gilbert Road and Sanger Avenue in the Village of New Hartford. This tank was disconnected from the distribution system and determined to be hydraulically obsolete back in 2004, following the construction of the Sanger Avenue water storage tank. The work involved demolition of the old steel water tower and restoration of grounds following its removal at a cost around \$300,000.

WATER MAIN REPLACEMENTS

In conjunction with the New York State Department of Transportation's roadway rehabilitation projects, the MVWA funded the replacement of existing water main along Champlin Avenue in the City of Utica and Genesee Street in the Village of New Hartford. The Champlin Avenue work consisted of approximately 1,300 feet of undersized main replacement between Whitesboro Street and Campbell Avenue including the replacement of fire hydrants and connection to existing service lines. The Genesee Street work consisted of approximately 3,400 feet of undersized main replacement between Jordan Road and State Route 8, along with 1,100 feet of main replacements within adjacent side streets including Oxford Road, Paris Road, and Mill Street. The project also involved the replacement of fire hydrants and connection to existing service lines. These improvements provided increased fire protection and increased reliability of service for the area. Collectively the construction cost for the Champlin Avenue and Genesee Street main replacement work was approximately \$2.7 million.

RAW WATER MAINS & NORTH AND SOUTH PIPE BRIDGES

The work associated with the Raw Water Main Phase 1 Pipe Bridge and Transmission Main Improvement Project, located in Prospect, NY and adjacent to the MVWA Water Treatment Plant commenced during April of 2023. Substantial completion of the contracted work occurred by December 2023, which included erection of the new southerly pipe bridge, demolition of the old intermediate pipe bridge, installation of raw water main, and installation of cross-connections between new and old piping. Final completion involving site restoration is expected to be achieved by May of 2024. Collectively the construction cost for these improvements was approximately \$5.4 million.

FEMA REPAIRs for "HALLOWEEN 2019 STORM" DAMAGE

Repairs for four locations around Southern Reservoir was completed in 2022, including erosion repairs with new riprap at the bypass channel, placement of a new concrete overflow spillway and stone abutment repair at the spillway bridge, reservoir bank failure repairs, stone drainage channel lining, and general site restoration. In November of 2023, a contract was awarded for the repair of transmission mains and restoration of grounds at nine sites within the Town of Marcy. Work associated with this \$2.6 million project commenced in December of 2023 and is expected to be completed by the fall of 2024. Two other repairs at the water treatment plant decant lagoon and the prospect dam, related to the FEMA storm damages, are currently in design and should go to construction during the spring of 2024, at an approximate construction cost of \$1.1 million.

EMERGENCY AND STAND-BY POWER

Select emergency and stand-by power improvement initiatives were undertaken in 2023. For the MVWA Valley View Pump Station, a back-up generator replacement design and contract award were completed. Work for this project commenced in the late fall of 2023 that involved the removal of the existing generator and replacement with a new generator at a construction cost of approximately \$120,000. The final work for this project is expected to be completed by July of 2024. In addition, a purchase order for the acquisition of a portable generator was let at the end of 2023 with a delivery date expected in March of 2024 and cost approximately \$160,000. To accommodate the use of this portable generator, a 2024 contract will be let to complete pump station electrical upgrades to allow quick connection of the portable unit into existing electrical systems during emergency events.

DISTRIBUTION SYSTEM SCADA AND SECURITY UPGRADES

In November of 2023, the MVWA purchased 34 new data transmitters for use with existing pressure regulator and pump stations, to replace existing transmitters. The use of the new Signalfire transmitters will allow for instantaneous pressure and flow data relay to water distribution system maintainers, which will provide enhanced trouble shooting and diagnostic capabilities. Security upgrades including fire/smoke alarms, building entry alarms, cameras, *etc.* continued in 2023. MVWA continues to aggressively work to protect its assets and provide a secure system for its customers.

WATER QUALITY DEPARTMENT

The Water Quality Department is responsible for monitoring and ensuring that the water produced and delivered by the Mohawk Valley Water Authority meets or exceeds the water quality standards set by New York State and the Federal government. The department operates the in-house laboratory, obtains outside analytical services, sets standards for water treatment operations, and conducts research projects. The research projects are used to solve problems and to prepare to meet future regulatory requirements. As new requirements are put into effect, the Mohawk Valley Water Authority will have to alter its treatment process to meet these standards. Our research activities will allow us to determine which treatment processes are the most effective for achieving the highest quality water in a cost-effective manner and make sure that we are ready to meet new standards as they are proposed and implemented.

In 2023, MVWA purchased a new instrument for the laboratory that analyzes lead and copper in-house. The laboratory gained accreditation in early 2024. This will greatly enhance customer service with reliable results and short turnaround times for samples and builds upon the sound platform of testing conducted in the water quality department. MVWA is proud to have a NELAC accredited laboratory for process control and distribution water quality to serve the needs of our customers. Customers of MVWA can be assured that the testing offered in our laboratory meets the quality standard established by the NYS Environmental Laboratory Approval Program.

In 1996, as MVWA emerged from the former City of Utica Water Board, the Water Quality Laboratory expanded its capabilities to include a pathogenic protozoan testing facility. This effort was discontinued in 2019 as the regulatory requirements for this testing ceased. If the need should arise, we are well positioned to re-start the monitoring program.

Since 1999, the department has had an active watershed monitoring program. A great benefit of a well-protected watershed such as ours is that water quality remains relatively consistent over time, which tends to help stabilize the treatment process.

The Water Quality Department is also an active member of the Water Research Foundation (WRF) and continues to participate in research projects with colleagues. Recent research initiatives include:

- Desktop Corrosion Evaluation in Preparation for the Lead & Copper Rule. (2000, with Corona Environmental Engineers of NY).
- Occurrence of *Legionella spp.* In Drinking Water Distribution Systems, (WRF#: 5156)
- Corrosion Control Pipe Loop Study. (ongoing, with Corona Environmental Engineers of NY).

This year staff presented on the above research and continued its outreach activities related to lead education and awareness. In keeping with our strategic plan and company goals, we continue these efforts and make a difference in the water quality field in 2023. Staff have also been proactive in providing opportunities for students in the community to observe, job-shadow, or intern within the department. Additionally, our staff resumed presentations to classes at all age levels, speaking on various topics including water quality, job opportunities, and environmental stewardship.

Beginning in August of 2017, MVWA entered a partnership with Veolia (formerly Suez) for the daily operation and maintenance of the Water Treatment Plant and related facilities. After working through some minor changes, the board extended this contract for an additional 10 years, starting January 1, 2023. This unique relationship has MVWA well positioned for the future.

WATER QUALITY REGULATIONS

In 1974, Congress passed the Safe Drinking Water Act, which set federal standards for drinking water. At that time, 22 contaminants were regulated. In 1986, the Act was amended to regulate many more contaminants and to further reduce acceptable levels of some contaminants. Currently more than 90 contaminants are regulated in potable water. The U.S. Environmental Protection Agency (USEPA) continually evaluates contaminant risk and occurrence as well as the need to regulate additional contaminants through various programs, including the Contaminant Candidate List (CCL) and the Unregulated Contaminant Monitoring Rule (UCMR). These federal standards can be adopted (and occasionally made more stringent) by the New York State Sanitary Code.

The Water Quality Laboratory ensures compliance with the federal and state regulations in part by continuous in-house sampling and testing. Samples are taken around the clock every day through our SCADA system, by the water treatment plant operators, and by MVWA staff. These samples are used to test for total coliform bacteria, pH, turbidity, chlorine residuals, fluoride concentration, and several other parameters as well.

Many of the regulated contaminants are tested less frequently on a schedule established in state and federal regulations. These include inorganics (metals and non-metals), organics (chemical solvents, pesticides, herbicides, hydrocarbons), asbestos, and radioactive compounds. For most of these substances, testing shows no detectable amounts present in our water.

Microscopic (1000x) images of *Cryptosporidium* sp. (circular-shape; left side of images) & *Giardia* sp. (oval-shape; right side of images).

The Long Term 2 Enhanced Surface Water Treatment Rule (LT2) and the Stage 2 Disinfection/Disinfection Byproducts (Stage 2 DBP) Rule were enacted by EPA in January 2006. The LT2 rule requires most systems to monitor their raw source water for *Cryptosporidium* for a period of 2 years and then provide additional treatment of the water if levels are greater than threshold limits established by the rule. Levels established during the required monitoring periods for MVWA determined that no additional treatment was needed for *Cryptosporidium* control. The LT2 Rule also requires all systems with uncovered finished water reservoirs (UFWR) to remove those reservoirs from service, cover them, or treat the effluent leaving the UFWR. The uncovered finished water reservoirs were completely taken offline during the summer of 2008. A 10-million-gallon tank is now located north of the Deerfield Reservoir, two 6 million-gallon tanks were constructed at the Marcy Summit and a 3-million-gallon tank has been

located on the Marcy Reservoir property.

The Stage 2 DBP Rule requires large water suppliers to systematically identify areas in the distribution system with the worst potential for disinfection byproduct formation (DBP) and to select new monitoring sites from this process. Further, this rule requires each new site's running annual average to follow federal limits of 0.080ppm for Total Trihalomethanes (TTHM) and 0.060ppm for Haloacetic Acids (HAAs). Prior to this rule all monitoring sites were averaged to achieve an overall distribution average for regulatory compliance. Since 2011, MVWA has used GAC to enhance organics removal from the water and meet the Stage 2 rule requirements.

The Water Quality Department continually researches treatment techniques to ensure compliance with these regulations and to prepare for any potential compliance issues for contaminants on the regulatory horizon. In 2018, from results of research conducted and analyzed onsite by MVWA personnel, the NYS DOH granted the Authority permission to use reactivated GAC in our filter beds. This process of removing spent filter media and reactivating it offsite and then returning it for use equated to \$284,000 in annual savings for our customers and provided equivalent removals of disinfection byproduct precursors. The use of GAC in the filters serves to more effectively remove natural organic matter that can serve as the precursors for DBP formation in the distribution system after chlorination. MVWA exceeded the 80 µg/L MCL for Trihalomethanes at one site near the former county airport in Oriskany in May of 2023. Notification of these exceedances was sent to all affected accounts in June 2023. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer. Mitigation efforts included operational changes for decreasing water age in the area by flushing and enhanced management of disinfectant residuals in the area to bring the system back into compliance based on the running annual average (calculated quarterly) in August 2023.

The results of the testing required by the Safe Drinking Water Act are submitted regularly to the Oneida County and New York State Health Departments. Since the opening of the new water treatment plant in 1992, the water quality has vastly improved, and the water is either meeting or exceeding the water quality standards.

WHAT CHEMICAL COMPOUNDS AND BACTERIA DO WE FIND IN THE DRINKING WATER?

Drinking water contains many different chemical compounds, many of which occur in nature. Some of these, such as minerals, impart a flavor to the water and prevent it from tasting bland. Other chemicals, such as heavy metals or pesticides, are contaminants that can affect health if ingested and must be removed or reduced to acceptable levels set by the US Environmental Protection Agency (USEPA) and the New York State Health Department. Most of these contaminants do not appear in nature. We test for many groups of compounds. These include: Volatile Organic Chemicals, Synthetic Organic Chemicals, Inorganic chemicals including metals and non-metals, Pesticides, Radionuclides, Asbestos, Trihalomethanes, and some unregulated compounds.

Many of the compounds that we test for have maximum contaminate levels (MCLs), which are established by state and federal regulation. The maximum level for these compounds is based on health-related information. The presence of these compounds at levels exceeding the maximum allowable level requires immediate public notification to our customers and state officials. The USEPA has not yet set standards for some unregulated compounds. Additional information about any compound on the following list can be obtained from the Water Quality Department.

The 2023 results of testing for the compounds are listed in the following tables. The frequency and amount of testing is mandated by the NYS Health Department and all results are reported to that agency. Parameters such as pH, turbidity, fluoride, and bacterial tests are monitored several times per day. The allowable concentration is the maximum contaminate level or MCL. The MCL is generally in units of milligrams per liter (mg/L) or micrograms per liter (μ g/L), but other units are used for some parameters. These and additional information are listed in the tables.

Also listed in the tables is a summary of the bacterial analysis that is performed daily by the Water Quality Laboratory. Testing is done throughout the entire distribution system to monitor for disinfectant residuals, pH, and bacteria. Several types of bacterial tests are performed. These include: the test for Total Coliform, *Escherichia coli (E.coli)*, and Heterotrophic (standard) Plate Counts. Testing in 2023 has revealed less than one coliform per 100ml in all our monthly monitoring averages. The water that our customers receive is of a superior bacteriological quality.

2023 ANALYTICAL RESULTS

TABLE 1. EPA 200.7 / 200.8 TOTAL METALS BY ICP/MS

TOTAL METALS	MCL (mg/L)*	RESULTS (mg/L)
Antimony	0.006	< 0.0004
Arsenic	0.010	< 0.001
Barium	2.00	0.006
Beryllium	0.004	< 0.0003
Cadmium	0.005	< 0.001
Chromium	0.100	< 0.007
Iron	0.300	< 0.050
Manganese	0.300	0.005
Mercury	0.002	< 0.0002
Selenium	0.05	< 0.005
Silver	0.1	< 0.001
Sodium	NL**	29.5
Thallium	0.002	< 0.0003
Zinc	5.0	<0.005

*MCL = Maximum Contaminant Level **Water containing more than 20 mg/L of sodium should not be used for drinking by people on severely restricted sodium diets. **Water containing more than 270 mg/L of sodium should not be used for drinking by people on moderately restricted sodium diets.

TABLE 2. EPA 335.4 TOTAL CYANIDE

TOTAL CYANIDE	<u>MCL (mg/L)</u>	<u>RESULTS (mg/L)</u>
Cyanide	0.2	<0.010

TABLE 3. MISCELLANEOUS PARAMETERS

Parameter	MCL	Results	<u>Units</u>
Chloride	250	4.2	mg/L
Fluoride	2.2	0.73	mg/L
Color	15	6	Color units
Odor	3	0	Odor units
Sulfate	250	12.6	mg/L

TABLE 4. SECONDARY CHARACTERISTICS

PARAMETER	UNIT OF MEASURE	ALLOWABLE CONC	HINCKLEY RESERVOIR (Raw Water)	<u>CAVANAUGH</u> <u>TANK*</u> (Finished)
ALKALINITY	mg/L AS CALCIUM CARB	NL	14	43
TOTAL HARDNESS	mg/L AS CALCIUM CARB	NL	16	19
CALCIUM HARDNESS	mg/L AS CALCIUM CARB	NL	13	16
CHLORIDES	mg/L	250	3.8	5.9
TURBIDITY	NTU	5.0	0.9	0.3
рН	pH UNITS	NL	6.88	9.45
COLOR	COLOR UNITS	15	45	4
IRON	mg/L	0.3	0.23	0.03
CONDUCTIVITY	µMHO/cm	NL	43.6	130.8
TOTAL DISSOLVED SOLIDS	mg/L	NL	20.4	61.9
FLUORIDE	mg/l	4.0	<0.1	0.69

ANNUAL AVERAGES FOR YEAR 2023 (Raw Water vs. Finished Drinking Water)

*Distribution water - site is representative of distribution water throughout system

TABLE 5. NITRATE

PARAMETER	UNIT OF MEASURE	ALLOWABLE CONCENTRATION	RESULT
NITRATE	mg/L	10	0.19

TABLE 6. TOTAL ORGANIC CARBON

PARAMETER	UNIT OF MEASURE	ALLOWABLE CONC	HINCKLEY RESERVOIR (Raw Water)	FILTRATION PLANT (Filtered)
тос	mg/L	NL	5.34	1.17
UV ₂₅₄	Abs cm ⁻¹	NL	0.212	0.021
SUVA		NL	3.96	1.73
% TOC Removal		NL		77.0%

TABLE 7. VOLATILE ORGANIC COMPOUNDS, PESTICIDES, HERBICIDES

VOLATILE ORGANICS		
Parameters	<u>Results</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	<0.50	µg/L
1,1,1-Trichloroethane (TCA)	<0.50	µg/L
1,1,2,2-Tetrachloroethane	<0.50	µg/L
1,1,2-Trichloroethane	<0.50	µg/L
1,1-Dichloroethene (1,1-DCE)	<0.50	µg/L
1,1-Dichloropropene	<0.50	µg/L
1,2,3-Trichlorobenzene	<0.50	µg/L
1,2,3-Trichloropropane	<0.50	µg/L
1,2,4-Trichlorobenzene	<0.50	µg/L
1,2,4-Trimethylbenzene	<0.50	µg/L
1,2-Dichlorobenzene	<0.50	µg/L
VOLATILE ORGANICS		
Parameters	<u>Resu</u> lts	<u>Unit</u> s
1,2-Dichloroethane	<0.50	µg/L
1,3,5-Trimethylbenzene	<0.50	µg/L
1,3-Dichlorobenzene	<0.50	µg/L
1,3-Dichloropropane	<0.50	µg/L
1,4-Dichlorobenzene	<0.50	µg/L
2,2-Dichloropropane	<0.50	µg/L
2-Chlorotoluene	<0.50	µg/L
4-Chlorotoluene	<0.50	µg/L
p-lsopropyltoluene	<0.50	µg/L
Benzene	<0.50	µg/L
Bromobenzene	<0.50	µg/L
Bromochloromethane	<0.50	µg/L
Bromodichloromethane	0.72	µg/L
Bromoform	<0.50	µg/L
Bromomethane	<0.50	µg/L
Carbon Tetrachloride	<0.50	µg/L
Chlorobenzene	<0.50	µg/L
Chloroethane	<0.50	µg/L
Chloromethane	<0.50	µg/L
Chloroform	8.2	µg/L
Dibromochloromethane	<0.50	µg/L
Dibromomethane	<0.50	µg/L
Dichlorodifluoromethane (CFC 12)	<0.50	µg/L
Methylene Chloride	<0.50	µg/L
Ethylbenzene	<0.50	µg/L
Hexachloro-1,3-butadiene	<0.50	µg/L
Isopropylbenzene (Cumene)	<0.50	µg/L

<0.50	µg/L
<0.50	µg/L
<u>Results</u>	<u>Units</u>
<0.50	µg/L
<0.010	µg/L
-0.010	ua/l
<0.010	ру –
<u>Results</u>	<u>Units</u>
<0.025	µg/L
<0.020	µg/L
<0.20	µg/L
<0.050	µg/L
<0.010	µg/L
<0.025	µg/L
<0.020	µg/L
<0.10	µg/L
<0.10	µg/L
<0.10	µg/L
<0.080	µg/L
<20.0	µg/L
<0.500	µg/L
<0.300	µg/L
	<0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.010 <0.010 <0.025 <0.020 <0.020 <0.020 <0.010 <0.025 <0.020 <0.010 <0.025 <0.020 <0.010 <0.025 <0.020 <0.010 <0.025 <0.020 <0.010 <0.025 <0.020 <0.010 <0.025 <0.020 <0.010 <0.025 <0.020 <0.010 <0.025 <0.020 <0.010 <0.010 <0.025 <0.020 <0.010 <0.010 <0.025 <0.020 <0.010 <0.025 <0.020 <0.010 <0.025 <0.020 <0.010 <0.010 <0.025 <0.020 <0.010 <0.010 <0.025 <0.020 <0.010 <0.020 <0.010 <0.010 <0.010 <0.010 <0.025 <0.020 <0.010 <0.020 <0.020 <0.010 <0.020 <0.020 <0.010 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.0200 <0.020 <0.020 <0.020 <0.020 <0.0200

TABLE 7. - CONTINUED

Aroclor-1248 (PCB-1248)	<0.100	µg/L
Aroclor-1254 (PCB-1254)	<0.100	µg/L
Aroclor-1260 (PCB-1260)	<0.200	μg/L
Toxaphene	<1.0	μg/L
Alachlor	<0.20	μg/L
Atrazine	<0.10	μg/L
Benzo(a)pyrene	<0.020	μg/L
Butachlor	<0.20	μg/L
Di(2-Ethylhexyl)adipate	<0.60	μg/L
bis(2-Ethylhexyl)phthalate	<0.60	µg/L
Metolachlor	<0.10	μg/L
Metribuzin	<0.50	µg/L
Propachlor	<0.10	μg/L
Simazine	<0.070	µg/L
1,4 Dioxane	<0.020	μg/L

PFAS COMPOUNDS		
Parameters	<u>Results</u>	<u>Units</u>
NEtFOSAA	<1.9	ng/L
NMeFOSAA	<1.9	ng/L
Perfluorobutanesulfonic acid	<1.9	ng/L
Perfluorodecanoic acid	<1.9	ng/L
Perfluorohexanoic acid	<1.9	ng/L
Perfluorododecanoic acid	<1.9	ng/L
Perfluoroheptanoic acid	<1.9	ng/L
Perfluorohexanesulfonic acid	<1.9	ng/L
Perfluorononanoic acid	<1.9	ng/L
Perfluorooctanesulfonic acid	<1.9	ng/L
Perfluorooctanoic acid	<1.9	ng/L
Perfluorotetradecanoic acid	<1.9	ng/L
Perfluorotridecanoic acid	<1.9	ng/L
Perfluoroundecanoic acid	<1.9	ng/L

CARBAMATES - EPA 531.1 Parameters	Results Units
Aldicarb	< 0.50 μg/L
Aldicarb Sulfone	< 0.80 μg/L
Aldicarb Sulfoxide	< 0.50 µg/L
Carbaryl	<1.0 µg/L
Carbofuran	< 0.90 µg/L
3-Hydroxycarbofuran	<1.0 µg/L
Methomyl	<1.0 µg/L
Oxamyl	< 1.0 µg/L

PESTICIDES		
Parameters	<u>Results</u>	<u>Units</u>
2,4-D	<0.10	µg/L
Dalapon	<0.70	µg/L
Dicamba	<1.0	µg/L
Dinoseb	<0.2	µg/L
Pentachlorophenol	<0.040	µg/L
Picloram	<0.10	µg/L
2,4,5-TP	<0.13	µg/L

NOTES:

Conc: Concentration mg/L – milligrams per liter µg/L – micrograms per liter ng/L – nanograms per liter NL- no limit NTU Nephlometric turbidity units < or U – less than or undetected *MCL is 50 µg/L for acetone

TABLE 8. MICROBIOLOGICAL ANALYSIS

DISTRIBUTION SYSTEM 2023

PARAMETER	UNIT OF MEASURE	ALLOWABLE CONCENTRATION	RESULT AVERAGE
TOTAL COLIFORM BACTERIA	BACTERIA PER 100 mL	< 5%	0.0%
E. coli	BACTERIA PER 100 mL	< 1 PER 100 mL	< 1 PER 100 mL
 MVWA averaged 205 Tota required to be collected. Two (2) samples out of 2,4 Coliforms are bacteria that 	I Coliform samples per month i 62 total routine samples collec are naturally present in the en	n 2023. A minimum of 100 s ted in 2023 were found to co vironment and are used as a	amples/month are ontain Total Coliform. In indicator that other,

potentially harmful bacterium may be present.
It should be noted that *E. coli*, associated with human and animal fecal waste, was also not found in any of the samples collected.

TABLE 9 (a), (b). THM/HAA ANALYSIS

(a) - TOTAL TRIHALOMETHANE LEVELS (TTHM) - 2023 Monitoring Results

	AVERAGE TTHM
Year 2023	(µg/L)
Stage 2 D/DBP Samples	56.6 (RANGE 13.1 – 95.2)
ALLOWABLE AVERAGE LIMIT (MCL)	80

(b) - HALOACETIC ACID LEVELS (HAA) - 2023 Monitoring Results

	AVERAGE HAA
Year 2023	(μg/L)
Stage 2 D/DBP Samples	20.1 (RANGE 5.4 – 37.6)
ALLOWABLE AVERAGE LIMIT (MCL)	60

TABLE 10. RADIOLOGICAL ANALYSIS

(Sample Date: 09/29/2020; Sampling Frequency = Once every 9 years)

	LEVEL ALLOWED	RESULT
GROSS ALPHA	15 pCi/L	1.58
GROSS BETA		0.455
RADIUM -226		0.150
RADIUM -228		0.642
COMBINED RADIUM	5 pCi/L	0.792
TOTAL URANIUM	30 μg/L	0.051

TABLE 11. ASBESTOS ANALYSIS (Sample Date: 03/20/2017; Sampling Frequency = Once every 9 years)

	LEVEL ALLOWED	RESULT
CHRYSOTILE		<as< td=""></as<>
AMOSITE		<as< td=""></as<>
CROCIDOLOTE226		<as< td=""></as<>
ACT-TREMOLITE		<as< td=""></as<>
ANTHOPHYLLITE		<as< td=""></as<>
TOTAL ASBESTOS	7.0 million fibers/liter (MFL; longer than 10 microns)	<as< td=""></as<>

<AS = LESS THAN ANALYTICAL SENSITIVITY

SITE NO.	LEAD RESULTS	SITE NO.		SITE NO.	
	(ppb)	40	(ppb)	70	(ddd)
1	<1.0	40	4.4	73 00	9.0
2	<1.0	41	4.5	00	9.0
3	<1.0	42	4.5	01	9.3
4	<1.0	43	4.5	82	9.3
5	<1.0	44	4.6	83	9.8
6	<1.0	45	4.7	84	10.0
7	<1.0	46	5.0	85	10.1
8	<1.0	47	5.0	86	11.5
9	<1.0	48	5.0	87	12.3
10	<1.0	49	5.1	88	12.4
11	<1.0	50	5.2	89	12.5
12	<1.0	51	5.3	90	12.5
13	<1.0	52	5.3	91	12.8
14	<1.0	53	5.3	92	12.8
15	1.2	54	5.4	93	14.3
16	1.2	55	5.5	94	16.0
17	1.5	56	5.5	95	16.1
18	1.6	57	5.7	96	19.8
19	1.9	58	5.8	97	33.2
20	1.9	59	5.8	98	33.2
21	2.0	60	5.9	99	63.4
22	2.1	61	6.4	100	192.0
23	2.2	62	6.5		
24	2.7	63	6.6		
25	2.8	64	6.6		
26	2.8	65	6.8		
27	2.9	66	6.9		
28	3.1	67	6.9		
29	3.4	68	7.2		
30	3.7	69	7.4		
31	3.8	70	7.4		
32	3.9	71	8.1		
33	3.9	72	8.4		
34	3.9	73	8.5		
35	3.9	74	8.6		
36	4.0	75	8.8		
37	4.2	76	8.9		
38	4.2	77	8.9		
39	4.4	78	8.9		

TABLE 12. SAMPLE LEAD MONITORING

 NOTE:

 1)
 90th percentile: 0.0125 mg/l or 12.5 ppb lead. Federal regulations require the 90th percentile lead level to be 15 ppb or lower NOTE: NYS DOH returned MVWA to standard monitoring for lead/copper starting in July 2023. This requires 100 samples collected and analyzed for these analytes every 6 months per the language specified in the law

Comula Data	CYANOTOXINS					
Sample Date	Total Microcystin (µg/L)	Anatoxin-a (µg/L)	Cylindrospermopsin (µg/L)			
8/6/2018	<mrl*< td=""><td><mrl< td=""><td><mrl< td=""></mrl<></td></mrl<></td></mrl*<>	<mrl< td=""><td><mrl< td=""></mrl<></td></mrl<>	<mrl< td=""></mrl<>			
8/20/2018	<mrl< td=""><td><mrl< td=""><td><mrl< td=""></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""></mrl<></td></mrl<>	<mrl< td=""></mrl<>			
9/4/2018	<mrl< td=""><td><mrl< td=""><td><mrl< td=""></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""></mrl<></td></mrl<>	<mrl< td=""></mrl<>			
9/17/2018	<mrl< td=""><td><mrl< td=""><td><mrl< td=""></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""></mrl<></td></mrl<>	<mrl< td=""></mrl<>			
10/1/2018	<mrl< td=""><td><mrl< td=""><td><mrl< td=""></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""></mrl<></td></mrl<>	<mrl< td=""></mrl<>			
10/15/2018	<mrl< td=""><td><mrl< td=""><td><mrl< td=""></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""></mrl<></td></mrl<>	<mrl< td=""></mrl<>			
11/5/2018	<mrl< td=""><td><mrl< td=""><td><mrl< td=""></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""></mrl<></td></mrl<>	<mrl< td=""></mrl<>			
11/19/2018	<mrl< td=""><td><mrl< td=""><td><mrl< td=""></mrl<></td></mrl<></td></mrl<>	<mrl< td=""><td><mrl< td=""></mrl<></td></mrl<>	<mrl< td=""></mrl<>			
*MRL = Minimum Reporting Level	MRL = 0.3	MRL = 0.03	MRL = 0.09			

TABLE 13. UNREGULATED CONTAMINANT MONITORING RULE (UCMR4) - CYANOTOXINS

TABLE 14. UNREGULATED CONTAMINANT MONITORING RULE (UCMR4) – DETECTED ANALYTES FROM DISTRIBUTION SYSTEM* *ND – Not detected. Empty cells indicate analyte not detected in any sample event. Samples Collected: 6/18/2019; 9/17/2019; 12/17/2019; 3/16/2020

		Distribution Sites						Raw Source	Entry Point		
	Analyte	LRAA1 – Judd Rd., Oriskany	LRAA2 – Mapledale, Barneveld	LRAA3 – Burrstone Rd., Utica	LRAA4 – Oneida St., Chadwicks	LRAA5 – Bell Hill Rd., Deerfield	LRAA6 – Higby Rd., New Hartford	LRAA7 – Middle Settlement Rd., New Hartford	LRAA8 – Herkimer Rd., Utica	Hinckley Reservoir	WTP Finished Water
	Bromochloroacetic Acid	 ND 0.58 µg/L (9/17/19) ND 0.49 µg/L (3/16/20) 	 0.49 µg/L (6/18/19) 0.54 µg/L (9/17/19) 0.33 µg/L (12/17/19) 0.32 µg/L (12/17/19) 	 0.35 µg/L (6/18/19) 0.60 µg/L (9/17/19) 0.32 µg/L (12/17/19) 0.42 µg/L (3/16/20) 	 0.31 µg/L (6/18/19) 0.50 µg/L (9/17/19) ND 0.49 µg/L (3/16/20) 	 ND 0.53 µg/L (9/17/19) ND 0.41 µg/L (3/16/20) 	 ND 0.55 µg/L (9/17/19) 0.32 µg/L (12/17/19) 0.61 µg/L (3/16/20) 	 ND 0.52 μg/L (9/17/19) 0.36 μg/L (12/17/19) 0.41 μg/L (3/16/20) 	 0.32 µg/L (6/18/19) 0.60 µg/L (9/17/19) 0.44 µg/L (12/17/19) 0.43 µg/L (3/16/20) 		
	Bromodichloroacetic Acid									-	
	Dibromoacetic Acid										
Haloacetic Acids	Dichloroacetic Acid	 7.7 µg/L (6/18/19) 6.2 µg/L (9/17/19) 8.8 µg/L (12/17/19) 9.1 µg/L (3/16/20) 	 17.6 µg/L (6/18/19) 5.4 µg/L (9/17/19) 8.7 µg/L (12/17/19) 5.3 µg/L (3/16/20) 	 12.0 µg/L (6/18/19) 6.3 µg/L (9/17/19) 7.7 µg/L (12/17/19) 6.0 µg/L (3/16/20) 	 7.7 µg/L (6/18/19) 4.9 µg/L (9/17/19) 5.8 µg/L (12/17/19) 6.3 µg/L (3/16/20) 	 7.0 µg/L (6/18/19) 5.1 µg/L (9/17/19) 4.8 µg/L (12/17/19) 6.9 µg/L (3/16/20) 	 8.1 µg/L (6/18/19) 5.1 µg/L (9/17/19) 8.1 µg/L (12/17/19) 9.7 µg/L (3/16/20) 	 7.9 μg/L (6/18/19) 5.4 μg/L (9/17/19) ND 7.2 μg/L (3/16/20) 	 10.9 µg/L (6/18/19) 6.9 µg/L (9/17/19) ND 7.5 µg/L (3/16/20) 		
	Monobromoacetic Acid										
	Monochloroacetic Acid			-	-				-	-	
	Trichloroacetic Acid	 17.9 μg/L (6/18/19) 3.8 μg/L (9/17/19) 12.4 μg/L (12/17/19) 8.2 μg/L (3/16/20) 	 15.4 µg/L (6/18/19) 3.2 µg/L (9/17/19) 7.5 µg/L (12/17/19) 4.6 µg/L (3/16/20) 	 15.0 µg/L (6/18/19) 3.4 µg/L (9/17/19) 7.7 µg/L (12/17/19) 4.8 µg/L (3/16/20) 	 15.7 μg/L (6/18/19) 3.7 μg/L (9/17/19) 9.6 μg/L (12/17/19) 8.3 μg/L (3/16/20) 	 17.9 µg/L (6/18/19) 3.9 µg/L (9/17/19) 11.0 µg/L (12/17/19) 5.4 µg/L (3/16/20) 	 19.3 µg/L (6/18/19) 3.2 µg/L (9/17/19) 10.3 µg/L (12/17/19) 7.4 µg/L (3/16/20) 	 15.7 μg/L (6/18/19) 3.7 μg/L (9/17/19) 9.6 μg/L (12/17/19) 6.8 μg/L (3/16/20) 	 15.7 µg/L (6/18/19) 3.7 µg/L (9/17/19) 8.8 µg/L (12/17/19) 5.5 µg/L (3/16/20) 	-	
	Bromide		(0/10/20)	(0,10,20)	(0,10,20)	(0/10/20)			(0/10/20)		
	Total Organic Carbon									 4580 µg/L (6/18/19) 5240 µg/L (9/17/19) 4670 µg/L (12/17/19) 3550 µg/L (3/16/20) 	
Semi-	Quinoline										
volatiles	O-Toluidine										
Alcoholo	n-Butanol										
Alcohois	2-Propen-1-ol (Allyl alcohol)										
Metals	Germanium Manganese										 5.2 μg/L (6/18/19) 4.4 μg/L (9/17/19) 10.5 μg/L (12/17/19) 8.5 μg/L (3/16/20)
	alpha-BHC										
	Chlorpyrifos										
des	Ethoprop										
stici	Merphos-Oxone										
Pes	Oxyfluorfen										
	Profenofos										
	Tebuconazole										

CRYPTOSPORIDIUM/GIARDIA INFORMATION

Cryptosporidium is a disease caused by the parasite *Cryptosporidium parvum*, which as late as 1976 was not known to cause disease in humans. Until 1993, when over 400,000 people in Milwaukee, Wisconsin, became ill with diarrhea after drinking water contaminated with the parasite, few people had heard of either *Cryptosporidiosis* or the single-celled protozoan that causes it.

Since the Milwaukee outbreak, concern about the safety of drinking water in the United States has increased, and new attention has been focused on determining and reducing the risk from *Cryptosporidiosis* from community and municipal water supplies.

Under the new Safe Drinking Water Act that has not been finalized, the U.S. Environmental Protection Agency will require all public water systems over 10,000 people to start looking for *Cryptosporidium* in the sources of their drinking water. Those systems that find the parasite will also have to test their finished water - the water that comes out of the tap for *Cryptosporidium*.

The Mohawk Valley Water Authority's Water Quality Laboratory has recognized the importance of monitoring for this parasite. The Water Quality Laboratory has expanded to become a state of the art facility capable of monitoring for waterborne parasites and pathogens. Both the raw (Hinckley Reservoir) and finished waters were monitored on a regular basis for over 20 years. There is currently no regulatory requirement to continue this monitoring. In fact, we have not been required to sample since 2017. MVWA is satisfied that the data collected during this extensive period is adequate to justify the effectiveness of our treatment process in removing these protozoans. Therefore, MVWA has suspended our protozoan monitoring program effective May 2019.

The best means of controlling the parasite is through a multi-barrier defense of filtration and chlorination. Both processes are performed and monitored at the Water Treatment Plant located in Prospect, New York.

A New York State Health Department Fact Sheet concerning *Cryptosporidiosis* is included with this water quality report. Further questions concerning *Cryptosporidium* can be addressed by contacting the Water Quality Laboratory or the Oneida County Department of Environmental Health.

Information on Cryptosporidium

Cryptosporidium is a microbial pathogen found in surface water and groundwater under the influence of surface water. Although filtration removes *Cryptosporidium*, the most commonly-used filtration methods cannot guarantee 100 percent removal. Ingestion of *Cryptosporidium* may cause cryptosporidiosis, a gastrointestinal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome this disease within a few weeks. However, immunocompromised people are at greater risk of developing life-threatening illness. We encourage immuno-compromised individuals to consult their health care provider regarding appropriate precautions to take to avoid infection. *Cryptosporidium* must be ingested to cause disease, and it may be spread through means other than drinking water.

Information on Giardia

Giardia is a microbial pathogen present in varying concentrations in many surface waters and groundwater under the influence of surface water. *Giardia* is removed/inactivated through a combination of filtration and disinfection or by disinfection. Ingestion of *Giardia* may cause Giardiasis, an intestinal illness. People exposed may experience mild or severe diarrhea, or in some instances no symptoms at all. Fever is rarely present. Occasionally some individuals will have chronic diarrhea over several weeks or a month, with significant weight loss. Giardiasis can be treated with antiparasitic medication. Individuals with weakened immune systems should consult with their health care providers about what steps would best reduce their risks of becoming infected with Giardiasis. Individuals who think that they may have been exposed to Giardiasis should contact their health care providers immediately. The *Giardia* parasite is passed in the feces of an infected person or animal and may contaminate water or food. Person to person transmission may also occur in day care centers or other settings where handwashing practices are poor.

CRYPTOSPORIDIOSIS: FACT SHEET

FROM: New York State Health Department

Cryptosporidiosis (krip-toe-spo-rid-e-o-sis) is the disease, often called crypto, caused by a one-celled animal, *Cryptosporidium parvum*, which is too small to be seen without a microscope. When people get infected with *Cryptosporidium*, they can have diarrhea, stomach cramps, an upset stomach, or a slight fever. The first symptoms of *Cryptosporidiosis* may appear 2 to 10 days after a person becomes infected. In a healthy person with a normal immune system, symptoms normally will last for about two weeks or less, although individuals may recover then get worse again. Some people with *crypto* may not get sick, but they can still pass the disease to others. After infection, an individual can pass *Cryptosporidia* in the stool for months and may give the disease to other people. Individuals with severely weakened immune systems may have *Cryptosporidiosis* for a longer time and should talk with their health care providers to learn how to avoid the disease. They can also call the CDC AIDS Hotline at 1-800-342-2437 for more information on *cryptosporidiosis*.

Cryptosporidium infection can be caused by swallowing only a small amount of *Cryptosporidium* oocysts.

Some sources of infection are:

<u>Water</u>

Water in lakes, rivers, streams, pools and jacuzzis may be contaminated with *Cryptosporidium* oocysts. Swallowing this water when swimming or drinking it may cause *cryptosporidiosis*.

Drinking water or ice may also contain *Cryptosporidium*. *Cryptosporidium* is in many of the lakes and rivers that provide drinking water in the United States. Unlike most germs and one-celled animals, *Cryptosporidium* is not killed by the chlorine used to treat drinking water. Boiling water is the best method of killing *Cryptosporidium*. Water should be brought to a rolling boil for one full minute. After the boiled water cools, it can be stored in a clean, sealed bottle or pitcher with a lid and used normally. Individuals should be careful not to touch the inside of their water bottles. Water can also be filtered to remove *Cryptosporidium*. Only filters labeled as reverse osmosis, and /or tested and certified by NSF Standard 53 for cyst reduction and/or absolute micron size of one micron or smaller are guaranteed to remove *Cryptosporidium*. Persons drinking bottled water. Canned and bottled bubbly drinks, such as sodas and beer, are usually heated and filtered enough in the factory to remove or kill *Cryptosporidium*. Hot tea and coffee also have no live *Cryptosporidia*.

<u>Stool</u>

Cryptosporidium can be found on clothing, bedding or other things used by infected persons, such as persons with diarrhea or children in diapers. Individuals should always wash their hands after touching these things and before touching food or the mouth. Sex that may involve contact with stool, especially oral sex, can also pass *Cryptosporidia*. The stool of domestic and farm animals, especially animals less than six months old or animals with diarrhea, can contain *Cryptosporidium*. Individuals should always wash their hands after touching animals or cleaning up their stool or visiting barns and areas where these animals live.

<u>Food</u>

Vegetables and fruit that touch dirt might be contaminated. Washing vegetables and fruit that will not be cooked, with water that has been boiled or filtered to remove *Cryptosporidium*, or bottled water that does not contain *Cryptosporidium*, can make them safer. Fruit that will not be cooked can also be peeled to make them safer. Cooked and packaged foods are probably safe if they are not handled by an infected person after cooking or processing. Unpasteurized milk or dairy products may not be safe.

<u>Objects</u>

Dirt in the garden and other places can become contaminated when an animal with *Crypto* leaves its stool there. Any object, such as a faucet handle, diaper changing table or bed pan, that is touched by an infected person who did not wash well after using the toilet can be contaminated. Individuals should always wash their hands well after working in dirt or touching anything that could have been contaminated by a person with *Crypto*.

There is no known drug that can cure *Cryptosporidiosis*. Healthy individuals will recover on their own. Persons with diarrhea should drink plenty of fluids and may want to drink an oral rehydration therapy mix, to avoid dehydration. These mixes are available at drug stores and sports stores. They may also wish to take anti-diarrhea medicine. Persons with weakened immune systems should consult their health care provider if they think they have *Cryptosporidium*.

If someone is infected with *Cryptosporidium*, they should wash their hands regularly, especially before preparing food and after going to the toilet; avoid close contact with anyone who may have a weakened immune system; and avoid swimming in public bathing areas (swimming pools, water parks, etc.) while they have diarrhea and for at least two weeks after it clears up.

THE LEAD AND COPPER RULE

The U.S. Environmental Protection Agency (USEPA) enacted the Lead and Copper Rule in 1991 to provide human health protection by reducing lead and copper levels at consumer's taps. The rule set a 90th percentile action level of 0.015 parts per million (ppm) for lead and 1.3 parts per million (ppm) for copper for homes tested (*i.e.* lead levels in the high-risk homes must be below 0.015 ppm (15 ppb) in 90% of the homes tested) and required for the first time that suppliers test for lead and copper at the tap.

Lead is unusual among drinking water contaminates because it seldom occurs naturally in water supplies. It enters drinking water primarily due to corrosion or wearing away of materials containing lead such as lead service lines, solder, or brass plumbing fixtures in the home. Ingestion of lead can pose significant health risks, especially for young children (under 6) and pregnant women.

Today there is an increased focus across the U.S. on lead in drinking water. Recent issues in Flint, MI, Newark, NJ, Washington, DC, and many other cities have led utilities to expand testing of drinking water taps and increase public awareness and education related to lead in drinking water. While service-line pipe material may be a source of lead, other sources including premise plumbing, lead-based paint, and lead in soils may provide a greater impact to blood lead levels. Regardless, MVWA is committed to educating its customers on the potential hazards associated with lead service lines. Revisions to the EPA's Lead and Copper Rule were finalized in December 2021 that will have a significant impact on water utilities' sample regimen, public education, and rates and services for compliance. EPA strengthened the rule by releasing the Lead and Copper Rule Improvements in 2023. The rule is not finalized but likely will require the removal of all lead service lines from water systems.

During 1992, the City of Utica Water Board initially conducted two rounds of testing for lead and copper to comply with the Lead and Copper Rule. Results of these tests in 1992 showed that the lead level in our drinking water was above the maximum allowable level. However, this first round of testing had to be completed before the new treatment plant was fully operational. Corrosion control chemical feeders installed in the treatment plant significantly reduced corrosion in the distribution system and lead levels decreased dramatically over the next few sample events (see graph below). In 1997, the New York State Health Department, reduced the monitoring requirement for lead to fifty samples per year and then further reduced compliance lead level monitoring to a three-year schedule. The Health Department placed MVWA back on standard monitoring in July 2023, requiring 100 samples every six months.

The effective use of this corrosion control facility has drastically reduced the lead levels at the high-risk consumers tap to levels acceptable to the State and Federal government. MVWA made an extensive effort to validate the service line material of homes sampled. Test results indicate that the lead levels are within federal guidelines. The results from the 2023 lead sampling effort are listed in Table 12 of the chemical analysis section. We are grateful for the support and cooperation of the homes that

participated in this sampling event. If you are concerned about lead levels at your tap in your home, please contact the Water Quality Department for more information. MVWA provides free lead testing for its customers who are concerned about lead in the water entering their home.

Historical average lead levels from LCR compliance monitoring.

BEST PRACTICES TO REDUCE RISKS OF LEAD EXPOSURE IN DRINKING WATER

What Are The Health Effects of Lead?

Lead can cause serious health problems if too much enters your body from drinking water or other sources. It can cause damage to the brain and kidneys and can interfere with the production of red blood cells that carry oxygen to all parts of your body. The greatest risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the effects of lead on the brain with lowered IQ in children. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults. Lead is stored in the bones, and it can be released later in life. During pregnancy, the child receives lead from the mother's bones, which may affect brain development.

What Are The Sources of Lead?

The primary sources of lead exposure for most children are deteriorating lead-based

paint, lead-contaminated dust, and lead-contaminated residential soil. Lead is found is some toys, some playground equipment, some children's metal jewelry, and some traditional pottery. Exposure to lead is a significant health concern, especially for young children and infants whose growing bodies tend to absorb more lead than the average adult. If you are concerned about lead exposure, parents should ask their health care providers about testing children for high levels of lead in the blood.

What Can I Do To Reduce Exposure to Lead in Drinking Water?

- **Run your water to flush out lead.** If water hasn't been used for several hours, run water for 15-30 seconds to flush lead from interior plumbing or until it becomes cold or reaches a steady temperature before using it for drinking or cooking.
- Use cold water for cooking and preparing baby formula.
- Do not boil water to remove lead.
- Look for alternative sources or treatment of water (such as bottled water or water filters).
- Re-test your water for lead periodically.
- Identify and replace plumbing fixtures containing lead.
- **Remove faucet strainers** and rinse them to remove any debris. This can be done periodically to remove accumulated debris as well.
- Make sure lead-free materials are used when building any new home.
- **Consider replacing lead service lines**. Find out from a certified plumber or your utility if your home has lead service lines, because these pipes can be a source of lead at the tap. A service line is the pipe between the curb stop and the water meter. It is typically at least partly under the control/ownership of the homeowner.
- **Recent data suggests** that replacing just part of the line can increase lead levels. If your utility is replacing its part of the line, it is a good idea for the homeowner to do the same.
- MVWA can test the water in your home for lead and copper. Please contact the Water Quality Department for additional information. MVWA is required to test for lead in homes with lead services on a schedule set by New York State and has been in compliance with the Lead and Copper Rule for over 20 years

For additional information please contact MVWA at 315-792-0301, www.mvwa.us or visit: <u>http://www.drinktap.org/</u>. For more information on reducing lead exposure around your home and the health effects of lead, visit EPA's Web site at <u>www.epa.gov/lead</u>, call the National Lead Information Center at 800-424-LEAD, or contact your health care provider.

UNREGULATED CONTAMINANT MONITORING RULE

The Safe Drinking Water Act requires that occurrence data for up to 30 unregulated contaminants be monitored every five years by public water utilities. The rule requires all systems serving >10,000 people and a subset of smaller systems monitor for these contaminants. The contaminants are selected from the Contaminant Candidate List (CCL), a list of contaminants known or anticipated to occur in public water systems and that may warrant regulation. The UCMR program provides the EPA with nationally representative data on contaminant occurrence in drinking water, exposure rates and levels. The data is then evaluated to determine if EPA should regulate any of those based on the results of the testing.

In 2018, MVWA began its required monitoring for the fourth Unregulated Contaminant Monitoring Rule (UCMR4) by sampling for the presence of nine cyanotoxins and one cyanotoxin group in our finished drinking water (Table 13). This effort continued in 2019 and concluded with a last round of sampling in March 2020. This included additional testing for three (3) haloacetic acid disinfection byproducts groups from the distribution system; total organic carbon and bromide from the source water; and two (2) metals, three (3) alcohols, three (3) semi-volatile organics, and eight (8) pesticides and one (1) pesticide byproduct from the WTP entry point (Table 14).

EPA recently released the schedule for the next round of sampling under this rule. UCMR5 will require MVWA to sample for 29 perfluorinated compounds and lithium from our entry point. This round of sampling is scheduled for 2025.

PREMISE PLUMBING ISSUES

While MVWA is pleased to provide a high-quality water and we are proactive in educating customers on lead service lines and its impact on the water you drink, it is important to note that there is an emerging focus on additional issues that may be present in the plumbing within your home, business, or institutional buildings. Utilities, public health agencies, property owners, and other stakeholders need to proactively work to develop outreach activities and educate water consumers about the risks associated with degraded water quality within buildings. Information on the proliferation, exposure, and modes of transmission for organisms such as *Legionella pneumophila*, *Mycobacterium avium*, and *Pseudomonas aeruginosa* needs to be communicated to water consumers so appropriate measures can be developed and implemented to increase awareness and decrease infectivity. In the drinking water industry, these organisms are called Opportunistic Premise Plumbing Pathogens (OPPP).

The three OPPP mentioned above have similar traits including the ability to survive in high temperatures, resistance to disinfectants, and an ability to grow within distribution pipes (known as a biofilm). Within the premise plumbing, especially in larger buildings where the water has long residence times and complex water piping networks, the risk for exposure to OPPP is elevated. Typically, the exposure isn't from drinking water but through aerosolization of the microbes in showers or air conditioning units. Unfortunately, there is no commonly accepted practice for prevention of the proliferation of these organisms. While intensive research is currently being funded, and several control strategies are being tested with limited effectiveness, currently the best strategy for decreasing exposure is educating consumers, building owners, and facility managers on the risks associated with premise plumbing water quality. If you would like more information on these issues, contact the water quality department or your local health department.

Additional concerns related to premise plumbing is the presence of lead within a home. Lead service lines, lead solder, or leaded-brass fixtures can contribute to the lead level found in drinking water tap samples. Refer to page 30 for best practices to reduce lead in your tap water.

THE BOTTLED WATER ALTERNATIVE

The bottled water and home treatment system industries have experienced a phenomenal growth in the U.S. in recent years. This is due in part to higher consumer concern about environmental issues including drinking water quality. Coupled with the marketing strategies of both industries, sales of bottled water and home treatment devices continue to increase rapidly. Consumers want high quality water and often feel that bottled water or additional in-home purification will provide higher quality water than that directly from the tap. This is generally not true.

In New York, bottled water is produced under State regulation. There are currently no federal standards for bottled water and in many states, it is unregulated. Quality of bottled water varies greatly due to minimal oversight of production, general lack of more stringent chemical and microbiological testing required for public water suppliers and long shelf times which the product often encounters. Tests of bottled water by the Suffolk and Nassau County Health Department have found traces of volatile organic chemicals and other contaminants in some brands. To our knowledge, no tests on bottled water have been conducted in Oneida County.

Home water treatment devices should only be used when an obvious water quality problem is demonstrated. Water quality testing to determine the existence of a problem in your home should be performed in a New York State certified (ELAP) laboratory using the sampling procedures and bottles supplied by the laboratory. If a problem is identified, the homeowner should consult with a reputable water quality scientist on how to deal with this problem. Ideally the consultant should not be in the business of selling home treatment equipment. Homeowners should be aware of two critical points when considering purchase of a home water treatment device.

WHEN CONSIDERING A HOME WATER TREATMENT DEVICE

• No one device can correct all water quality problems. Each type of device has a specific function. There is no such thing as a one-device-cures-all treatment. For example: carbon filters can remove some organic chemical contaminants, but are

not effective against inorganic chemical contaminants, (nitrate or heavy metals or microorganisms).

• All home water treatment devices require continuous maintenance for proper operation. Failure to properly maintain these devices can result in poorer water quality.

Public water suppliers like the Mohawk Valley Water Authority and across the United States must meet strict Federal and State water quality standards. If a supply fails to meet any primary standard, the supplier must notify the State and the American public that the public water supply is not safe to drink throughout the United States. Assertions that Mohawk Valley Water Authority's water is or may be unsafe to drink are not true. The use of bottled water and home treatment devices often lead consumers to increased sense of security when no problem existed in the first place and no improvement in quality has been achieved.

Cost Comparison of MVWA's Tap Water

One gallon of bottled water is approximately \$ 1.50
One gallon of MVWA's tap water costs approximately \$ 0.005

Product	Average Price \$ USD / Gallon
Tap Water	\$0.005
Cola Product	\$ 3.00
Gasoline	\$3.70
Laundry Detergent	\$8.50
Imported Beer	\$12.00
Imported Bottled Water	\$25.00
Designer coffee latte	\$22.00
Cough Syrup	\$100.00
American Whiskey	\$150.00
Eye Drops	\$750.00
Good French Wine	\$1,000.00

ADDITIONAL INFORMATION IS AVAILABLE ON REQUEST

We are pleased to present our water quality report to you. Delivering quality water to you in the appropriate quantity is the highest priority for the Mohawk Valley Water Authority. Through the meticulous efforts of the Authority's team, the water is meeting or exceeding federal and state water quality standards.

It is our pleasure to serve you and keep you informed about the quality of your drinking water. Questions or comments can be directed to our Water Quality Department. We encourage the public to be better informed about this important resource. MVWA's personnel are happy to provide additional information on the regional water system and will gladly speak to individuals, groups, or organizations to enhance understanding of the goals and challenges of drinking water utilities. Please contact Customer Service with any concerns or questions, they can direct you to the proper department within the Authority and provide prompt answers to any concerns that need addressing.

Sincerely,

Philip A Tangona

Philip A. Tangorra Director of Water Quality

 The short form AWQR is detailed below, which includes all required reporting as defined in the regulations guiding annual water quality reports. Much of the information below is included in the above document.

DRINKING WATER QUALITY REPORT FOR 2023 Upper Mohawk Valley Regional Water Board (Mohawk Valley Water Authority) 1 Kennedy Plaza Utica, New York 13502 (Public Water Supply ID# NY3202411)

MVWA Report – Use with Supplemental System reports for required reporting information.

INTRODUCTION

To comply with State and Federal regulations, the Mohawk Valley Water Authority (MVWA) will be annually issuing a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. MVWA had a violation of the Stage 2 Disinfection Biproducts Rule in 2023 at one site near the former county airport in Oriskany in May 2023. This report provides an overview of last year's (2023) water quality. Included are details about where your water comes from, what it contains, and how it compares to State and Federal standards.

If you have any questions about this report or concerning your drinking water, please contact Philip Tangorra, Director of Water Quality, at (315) 792-0301. We want you to be informed about your drinking water. If you want to learn more, please attend any of our regularly scheduled Water Board meetings. The meetings are held on the third Monday of each month at the Mohawk Valley Water Authority Conference Room, third floor, Utica City Hall at 5 P.M.

For non-English speaking / reading population:

"This report contains important information about your drinking water. Translate it or speak with someone who understands it."

Bosnian – Ovaj izvještaj sadrži važne informacije o vodi za piće. Prevesti, ili razgovarati s neko ko razumije.

Russian - Этот отчет содержит важную информацию о вашей питьевой воды. Перевести его, или поговорить с кем-то, кто понимает его.

Somali – Warbixintani waxay ku qoran macluumaad muhiim ah oo ku saabsan biyo aad u cabbo. Fasiri karaa ama ula hadasho qof fasiri karaa adiga.

Spanish - Este informe contiene información muy importante sobre su agua beber. Tradúzcalo ó hable con alguien que lo entienda bien.

Vietnamese - Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Dịch nó, hoặc nói chuyện với một ai đó hiểu nó.

Simplified Chinese - 该报告包含有关饮用水的重要信息。翻译它,或者与别人谁了解它说话。

Traditional Chinese - 該報告包含有關飲用水的重要信息。翻譯它,或者與別人誰了解它說話。

WHERE DOES YOUR WATER COME FROM?

In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include microbial contaminants; inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. To ensure that tap water is safe to drink, the State and the EPA prescribe regulations which limit the level of certain contaminants in water provided by public water systems. The State Health Department's and the FDA's regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

The water we drink gathers in the streams and creeks of a remote 374 square mile Adirondack Mountain watershed, far from settled areas and farmland. These tributaries drain into the West Canada Creek, which carries our water to the New York State-owned Hinckley Reservoir, the source of our water supply.

SOURCE WATER ASSESSMENT INFORMATION

A Source Water Assessment has been completed for our water system. Possible and actual threats to drinking water source(s) were evaluated. The source water assessment includes a susceptibility rating based on the risk posed by each potential source of contamination and how easily contaminants can move through the subsurface to the source(s). The susceptibility rating is an estimate of the potential for contamination of the source water, it does not mean that the water delivered to consumers is or will become contaminated. The Source Water Assessment Program

(SWAP) is designed to compile, organize, and evaluate information to make better decisions regarding protecting sources of public drinking water. The report does not address the safety or quality of treated finished potable tap water. The source water assessment report is based on reasonably available information. Although efforts have been made to check the source water assessment report for accuracy, the large scope of this program and the nature of the available data make the elimination of all errors from these reports nearly impossible. It is important to note that source water assessment reports estimate the potential for untreated drinking water sources to be impacted by contamination. A copy of the assessment, including a map of the assessment area, can be obtained by contacting us, as noted above.

During 2005 a source water assessment was completed under the NYS Department of Health's Source Water Assessment Program (SWAP). This assessment found a low to moderate susceptibility to contamination of our source water. Land cover and its associated activities within the assessment area did not increase the potential for contamination. Permitted discharges from facilities in the watershed do not represent an important threat to source water quality, based on their density in the assessment area. There are no likely contamination threats associated with other discrete contaminant sources, even though some facilities were found in low densities. Additional sources of potential contamination include the roadways in the watershed. In conclusion, it was noted that hydrologic characteristics (basin shape and flushing rates) generally make reservoirs highly sensitive to existing and new sources of phosphorus and microbial contamination.

See section "Are there contaminants in our drinking water?" for a list of the contaminants that have been detected. The source water assessments provide resource managers with additional information for protecting source waters into the future.

Based upon the SWAP Report determinations, good judgment should be used, and caution should be exercised when determining land use near the source. We work hard to ensure that the source of water for our system is protected from contamination. MVWA has an established inspection & monitoring program within the Hinckley watershed. In addition, the MVWA has existing Watershed Rules and Regulations (10NYCRR Chapter III Part 130.2) that regulate the land use and potential contamination sources around the water source. This is accomplished through a combination of land ownership and policing of the watershed area.

How IS YOUR WATER TREATED?

In 1990, after four years of careful testing, planning and design, construction of a water treatment and filtration plant began at a site near the village of Prospect. The facility became operational in 1992. The treatment plant includes a double filtration system designed to remove most of the organic matter and contaminants.

After our water has been filtered it is chlorinated. Chlorine is a disinfecting agent and kills bacteria present in the water. Chlorine levels are continuously monitored throughout our 650 miles of pipe that brings the water to your home.

Fluoride is added to your water in concentrations of 0.7 mg/l. Fluoride has been shown to reduce tooth decay and cavities.

Our water is treated to control corrosion of household plumbing that may contain metals such as lead. Calcium hydroxide (lime) and sodium carbonate (soda ash) are used in small amounts to buffer the water so that it is rendered non-corrosive to your home's plumbing. Lime and soda ash are naturally occurring substances, which pose no threat to human health. Lead levels measured in our customers' homes are in compliance with the Federal Lead Monitoring Program action levels.

FACTS AND FIGURES

Our water system presently serves approximately 126,250 people through over 38,900 service connections. The daily average amount of water treated was 18.1 million gallons per day. Our highest single day of production was 19.8 million gallons. The total water produced in 2023 was approximately 6.6 billion gallons. Some of the water was used for flushing water mains, filter backwashing, plant processes, equipment and hydrant testing, fighting fires, training firefighters, street cleaning and water main breaks and leakage. Approximately 3.3 billion gallons were sold to our customers. MVWA has an ongoing Leak Detection and Repair Program. All distribution mains within the MVWA system are surveyed by professional Leak Detection Contractors on a recurring basis. In the past 5 years, 2.0 to 2.5 MGD of non-revenue water demand has been eliminated through this program.

In 2023, residential water customers were charged approximately \$5.48 per 1,000 gallons of water (average family of four).

<u>SYSTEM IMPROVEMENTS</u> - During 2023 the MVWA continued its aggressive program of reinvestment in the Regional System.

WATER SYSTEM MAINTENANCE AND CAPITAL IMPROVEMENT SUMMARY

The Engineering, Distribution and Maintenance Departments continued to implement major physical and operational improvements throughout the Regional Transmission and Distribution System and Facilities in 2023. Nearly \$8,100,000 in improvements were completed with another \$17,900,000 in various stages of design or construction. The Departments were able to accomplish these projects while managing inflationary pressures such as escalating materials prices, labor costs, and delayed deliveries related to supply chain disruptions.

MVWA utilizes system management tools to improve water service reliability and ensure sustainability throughout the Regional Water System. In 2022 and 2023, MVWA enlisted a consultant engineer firm to upgrade and modernized the systemwide all pipe hydraulic model. The model can also be utilized for water quality modeling. Real-time remote monitoring of pressure, flow and water quality parameters is accomplished utilizing the MVWA SCADA System. A systemwide replacement program of the SCADA system (electronic remote monitoring) was completed at the Water Treatment Plant in 2021 and the remainder of the distribution system assets were upgraded this year. GIS/Mapping system and annual Leak Detection Survey allows the tracking and reporting of water accountability for reducing unaccounted-for water.

The Departments are also responsible for preparing, bidding, and administering routine annual contracts for commodities and services including: Water Main Materials, Leak Detection, Generator Maintenance, Fence Repairs, Tree Removals, Backflow Testing, Asphalt Paving and Concrete repairs and numerous other System needs. There is also an annual Tank Diving contract that permits the cleaning and inspection of the tanks while they remain in service thus eliminating lengthy service interruptions.

In 2022, a rollout of remote pressure monitoring devices (42 total) in PRV chambers was progressed throughout the year. These remote pressure monitoring devices give MVWA additional "eyes-and-ears" throughout the system to help respond quickly to system problems. All remote pressure monitoring devices are compatible with and able to be viewed in the new SCADA system. Repairs and upgrades to the chambers to improve access and safe working conditions also continue.

In 2022 and 2023, the MVWA owned Water Treatment Plant was upgraded to convert the disinfection process, from a chlorine gas fed system to liquid sodium hypochlorite fed treatment system. These improvements helped reduce the hazards associated within the transportation, storage and use of chlorine gas and provided a more efficient means for the treatment of raw water into potable water.

Department staff are active members of several professional associations and their governing Boards. MVWA staff remained engaged and continue to serve as leaders in the drinking water sector.

PROJECTS AND OPERATIONS IN FY 2023 INCLUDED:

FACILITIES - PUMPSTATIONS AND WATER STORAGE TANKS

A major project in 2022 and 2023 was the conversion from gaseous chlorine to liquid sodium hypochlorite as the primary disinfection system at the WTP. This >\$2-million-dollar project eliminates the risks associated with storage and use of chlorine gas at our facility. The switch from gas to a temporary hypochlorite system was seamless while building and process improvements were made to the permanent system. Final completion is scheduled for Spring 2024.

The Gilbert Tank Demolition Project involved the removal of an existing water tower located adjacent to Gilbert Road and Sanger Avenue in the Village of New Hartford. This tank was disconnected from the distribution system and determined to be hydraulically obsolete back in 2004, following the construction of the Sanger Avenue water storage tank. The work involved demolition of the old steel water tower and restoration of grounds following its removal at a cost around \$300,000.

WATER MAIN REPLACEMENTS

In conjunction with the New York State Department of Transportation's roadway rehabilitation projects, the MVWA funded the replacement of existing water main along Champlin Avenue in the City of Utica and Genesee Street in the Village of New Hartford. The Champlin Avenue work consisted of approximately 1,300 feet of undersized main replacement between Whitesboro Street and

Campbell Avenue including the replacement of fire hydrants and connection to existing service lines. The Genesee Street work consisted of approximately 3,400 feet of undersized main replacement between Jordan Road and State Route 8, along with 1,100 feet of main replacements within adjacent side streets including Oxford Road, Paris Road, and Mill Street. The project also involved the replacement of fire hydrants and connection to existing service lines. These improvements provided increased fire protection and increased reliability of service for the area. Collectively the construction cost for the Champlin Avenue and Genesee Street main replacement work was approximately \$2.7 million.

RAW WATER MAINS & NORTH AND SOUTH PIPE BRIDGES

The work associated with the Raw Water Main Phase 1 Pipe Bridge and Transmission Main Improvement Project, located in Prospect, NY and adjacent to the MVWA Water Treatment Plant commenced during April of 2023. Substantial completion of the contracted work occurred by December 2023, which included erection of the new southerly pipe bridge, demolition of the old intermediate pipe bridge, installation of raw water main, and installation of cross-connections between new and old piping. Final completion involving site restoration is expected to be achieved by May of 2024. Collectively the construction cost for these improvements was approximately \$5.4 million.

FEMA REPAIRs for "HALLOWEEN 2019 STORM" DAMAGE

Repairs for four locations around Southern Reservoir was completed in 2022, including erosion repairs with new riprap at the bypass channel, placement of a new concrete overflow spillway and stone abutment repair at the spillway bridge, reservoir bank failure repairs, stone drainage channel lining, and general site restoration. In November of 2023, a contract was awarded for the repair of transmission mains and restoration of grounds at nine sites within the Town of Marcy. Work associated with this \$2.6 million project commenced in December of 2023 and is expected to be completed by the fall of 2024. Two other repairs at the water treatment plant decant lagoon and the prospect dam, related to the FEMA storm damages, are currently in design and should go to construction during the spring of 2024, at an approximate construction cost of \$1.1 million.

EMERGENCY AND STAND-BY POWER

Select emergency and stand-by power improvement initiatives were undertaken in 2023. For the MVWA Valley View Pump Station, a back-up generator replacement design and contract award were completed. Work for this project commenced in the late fall of 2023 that involved the removal of the existing generator and replacement with a new generator at a construction cost of approximately \$120,000. The final work for this project is expected to be completed by July of 2024. In addition, a purchase order for the acquisition of a portable generator was let at the end of 2023 with a delivery date expected in March of 2024 and cost approximately \$160,000. To accommodate the use of this portable generator, a 2024 contract will be let to complete pump station electrical upgrades to allow quick connection of the portable unit into existing electrical systems during emergency events.

DISTRIBUTION SYSTEM SCADA AND SECURITY UPGRADES

In November of 2023, the MVWA purchased 34 new data transmitters for use with existing pressure regulator and pump stations, to replace existing transmitters. The use of the new Signalfire transmitters will allow for instantaneous pressure and flow data relay to water distribution system maintainers, which will provide enhanced trouble shooting and diagnostic capabilities. Security upgrades including fire/smoke alarms, building entry alarms, cameras, *etc.* continued in 2023. MVWA continues to aggressively work to protect its assets and proved a secure system for its customers.

ARE THERE CONTAMINANTS IN YOUR DRINKING WATER?

As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants include: total coliform, turbidity, inorganic compounds, nitrate, nitrite, lead and copper, volatile organic compounds, disinfection byproducts, and synthetic organic compounds. The table presented below depicts which compounds were detected in your drinking water. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

It should be noted that all drinking water, including bottled drinking water, might be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 800-426-4791 or the Oneida County Health Department at 315-798-5064.

Table of Detected Contaminants							
Contaminant	Is System in Violation?	Date of Level Detected Sample (Range)		Unit Measuremen t	MCLG / MRDLG	Regulatory Limit (MCL, MRDL, TT or AL)	Likely Source of Contamination
Microbiological Contaminants- o	ver 100 Coli	form Sample	es Monthly (2,462 collected	d in 2023)			
Total Coliform	No	N/A	N/A ⁽¹⁾	N/A	0 N/A	Any positive sample	Naturally present in the environment.
Physical Parameters							
Turbidity (Filtered Water) ^(3a)		07/20/2023	0.12 (highest single measurement) ^(3a)			TT = <1.0 NTU	
Turbidity (Filtered Water) (3b)	No	All months ≤ 0.3	99.9% ≤ 0.3 (lowest monthly percentage of samples meeting specified limits)	NTU	N/A	TT = 95% of samples <0.3 NTU	Soil Runoff
Turbidity (Distribution)		Daily	0.28 ⁽⁴⁾ (range = 0.09 – 4.06)			TT = <5 NTU (Monthly Average)	
Total Organic Carbon (Raw Water)	No	Monthly	5.3 ⁽⁵⁾ (range = 3.1 – 7.6)	ma/l	Ν/Δ	TT (relative to	Naturally present in the environment
Total Organic Carbon (Filtered Water)	NO	Wontiny	1.2 ⁽⁵⁾ (range = 0.2 – 2.0)	iiig/i	11/7	removal rates)	
Inorganic Contaminants							
Barium	No	8/23/2023	0.006	mg/l	2	MCL = 2	Erosion of natural deposits.
Chloride	No	8/23/2023	4.2	mg/l	N/A	MCL = 250	Naturally occurring.
Copper	No	2023	0.014 ⁽⁶⁾ (range = ND – 0.035)	mg/l	1.3	AL = 1.3	Corrosion of household plumbing systems; Erosion of natural deposits.
Lead	No	2023	12.5 ⁽⁷⁾ (range = ND – 192)	µg/l	0	AL = 15	Corrosion of household plumbing systems; Erosion of natural deposits.
Fluoride (System Entry Point)	No	Daily	0.7 ⁽⁸⁾ (range = 0.5 – 0.9)	ma/l	N/A	MCI = 2.2	Erosion of natural deposits; Water additive that promotes strong teeth (<i>The</i>
Fluoride (Distribution System)	No	Monthly	0.7 ⁽⁹⁾ (range = 0.5 – 0.9)	mg/i	14/7 1		MVWA water system adds Fluoride to the water).

Table of Detected Contaminants										
Contaminant	ls System in Violation?	Date of Sample	Level Detected Average / Maximum (Range)	Unit Measuremen t	MCLG / MRDLG	Regulatory Limit (MCL, MRDL, TT or AL)	Likely Source of Contamination			
Nitrate	No	2/8/2023	0.19	mg/l	N/A	MCL = 10	Run off from fertilizer use, leaching of septic tanks, erosion of natural deposits.			
Sodium	No	8/23/2023	23.0 (10)	mg/l	N/A	See Note 11 below	Naturally occurring; part of pH adjustment additive.			
Sulfate	No	8/23/2023	12.6	mg/l	N/A	MCL = 250	Naturally occurring.			
Disinfectants / Disinfection Byproducts										
Chlorine Residual	No	Daily/ Monthly	0.9 ⁽¹¹⁾ (range = 0.2 – 2.0)	mg/l	N/A	MRDL = 4 ⁽¹²⁾	Water additive used to control microbes.			
Haloacetic Acids (mono-, di- and trichloroacetic acid, and mono- and dibromoacetic acid)	No	Quarterly at 8 sites	20.1 ⁽¹³⁾ (range = 5.4 – 37.6)	µg/l	N/A	MCL= 60	By product of drinking water disinfection needed to kill harmful organisms.			
Total Trihalomethanes (TTHMs – chloroform, bromodichloromethane, dibromochloromethane and bromoform)	Yes*	Quarterly at 8 sites	56.6 ⁽¹⁴⁾ (range = 13.1 – 95.2)	µg/l	N/A	MCL = 80	Byproduct of drinking water chlorination needed to kill harmful organisms. TTHMs are formed when source water contains large amounts of organic matter.			
Unregulated Contaminants (UCMR4 Data)										
Bromochloroacetic Acid	No	June, September, & December 2019; March 2020	ND – 0.61 ⁽¹⁵⁾	µg/l	N/A	N/A	By product of drinking water disinfection needed to kill harmful organisms.			
Dichloroacetic Acid	No		ND – 17.6 ⁽¹⁵⁾	µg/l	N/A	N/A				
Trichloroacetic Acid	No		3.2 – 19.3 ⁽¹⁵⁾	µg/l	N/A	N/A				
Total Organic Carbon	No		3550 – 5240 ⁽¹⁶⁾	µg/l	N/A	N/A	Naturally occurring.			
Manganese	No		4.4 – 10.5 (17)	µg/l	N/A	N/A	Naturally occurring.			

*MVWA exceeded the 80 µg/L MCL for Trihalomethanes (TTHM) at one site near the former county airport in Oriskany in May 2023. Mitigation efforts included operational changes for decreasing water age in the area by flushing and enhanced management of disinfectant residuals in the area to bring the system back into compliance again based on the running annual average (calculated quarterly) in August 2023. Additional changes to the storage tanks in that portion of the system are scheduled for 2024 to reduce TTHM levels in that area.

Trihalomethanes are a group of chemicals that includes chloroform, bromoform, bromodichloromethane, and chlorodibromomethane. Trihalomethanes are formed in drinking water during treatment by chlorine, which reacts with certain acids that are in naturally occurring organic material (e.g., decomposing vegetation such as tree leaves, algae, or other aquatic plants) in surface water sources such as rivers and lakes. The amount of trihalomethanes in drinking water can change from day to day, depending on the temperature, the amount of organic material in the water, the amount of chlorine added, and a variety of other factors. Drinking water is disinfected by public water suppliers to kill bacteria and viruses that could cause serious illnesses. Chlorine is the most commonly used disinfectant in New York State. For this reason, disinfection of drinking water by chlorination is beneficial to public health.

Some studies suggest that people who drink chlorinated water (which contains trihalomethanes) or water containing elevated levels of trihalomethanes for long periods of time may have an increased risk for certain health effects. For example, some studies of people who drank chlorinated drinking water for 20 to 30 years show that long term exposure to disinfection by-products (including trihalomethanes) is associated with an increased risk for certain types of cancer. A few studies of women who drank water containing trihalomethanes during pregnancy show an association between exposure to elevated levels of trihalomethanes and small increased risks for low birth weights, miscarriages, and birth defects. However, in each of the studies, how long and how frequently people actually drank the water, as well as how much trihalomethanes the water contained is not known for certain. Therefore, we do not know for sure if the observed increases in risk for cancer and other health effects are due to trihalomethanes or some other factor. The individual trihalomethanes chloroform, bromodichloromethane and dibromochloromethane cause cancer in laboratory animals exposed to high levels over their lifetimes. Chloroform, bromodichloromethane are also known to cause effects in laboratory animals after high levels of exposure, primarily on the liver, kidney, nervous system and on their ability to bear healthy offspring. Chemicals that cause adverse health effects in laboratory animals after high levels of exposure may pose a risk for adverse health effects in humans exposed to lower levels over long periods of time.

Additional Detected Water Quality Parameters Collected (MVWA)									
Contaminant	Level Detected - Aver	age or Maximum (Range)	Unit Measurement	Importance of Parameter Measurement for Treatment					
рН	9.42 (range	e = 7.14 – 9.75)	units	pH is a measure of the acidity or basicity of water. Solutions with a pH less than 7 are said to be acidic and solutions with a pH greater than 7 are basic or alkaline. The pH of our water has an effect on our water treatment and the efficiency of chemical treatment (<i>e.g.</i> , coagulants, chlorine).					
Notes:									
1 - We averaged 205 Total Coliforent the environment and are use coliforms were detected in was not found in any of the s	orm samples per month in 2 ad as an indicator that other 5% of the samples collected samples collected.	J23. One sample out of 2,462 to , potentially harmful bacteria m during each month when detec	otal routine samples co lay be present. Additior cted, the system did no	Ilected in 2023 was found to contain Total Coliform. Coliforms are bacteria that are naturally present in al samples would be subsequently collected after each positive sample for total coliforms. Since total t have an MCL violation. It should be noted that E. coli, associated with human and animal fecal waste,					
2 - A Level 1 assessment is triggered at systems collecting 40 or more samples per month when more than 5% of the total coliform samples are positive or at systems collecting less than 40 samples per month when two									
or more samples are total coliform positive. A Level 1 assessment can also be triggered if the system fails to take every required repeat sample after any single total coliform-positive sample.									
3a - This value represents the hig 3b - Turbidity is a measure of the measurements below 0.3 NT	Thest daily average number e cloudiness of the water. W TU. 100% of the samples rec	reported. /e test it because it is a good ir corded during 2023 were within	ndicator of the effective the acceptable range a	ness of our filtration system. The regulations require that 95% of the turbidity samples collected have llowed.					
 4 - Turbidity is measured daily in the distribution system. State regulations require that the monthly turbidity average must always be below 5 NTU. The monthly average of the results in the months with highest turbidity levels were all below 5 NTU. June 2023 had the highest monthly average of Distribution Turbidity measurements (0.37 NTU). 5 This level super second to average of upper second to average of upper second to average of the results. 									
 6 - The level presented represents the 90th percentile of the 100 sites tested in 2023. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the copper values detected at your water system. In this case, 100 samples were collected at your water system and the 90th percentile value was the 10th highest value. The action 									
 I evel for copper was not exceeded at any of the sites tested. The next scheduled round of copper sampling is 2024. 7 - The level presented represents the 90th percentile of the 100 samples collected in 2023. In this case, 100 samples were collected at your water system and the 90th percentile value was the 10th highest value. Seven samples exceeded the action level of 15ppb for lead. The next scheduled lead sampling is 2024. 									
8 - This level represents the average and range calculated from daily measurements.									
9 - This level represents the average and range calculated from nearly 700 sample submission results. 10 - Water containing more than 20 mg/l of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more than 270 mg/l of sodium should not be used for drinking by people									
on moderately restricted sod	ium diets.								
11 - This level represents the ave	erage and range calculated f	rom sample submission results	i.						
12 - Value presented represents the Maximum Residual Disinfectant Level (MRDL) which is a level of disinfectant added for water treatment that may not be exceeded at the consumer's tap without an unacceptable possibility of adverse health effects. MRDLs are currently not regulated but in the future, they will be enforceable in the same manner as MCLs.									
13 - This level represents the highest Locational Running Annual Average along with the range of results for samples collected in compliance with the Stage 2 DBP Rule. Compliance with the MCL (60 ug/l) for HAAs is									
determined by the Locational Running Annual Average.									
14 - This level represents the highest Locational Running Annual Average along with the range of results for samples collected in compliance with the Stage 2 DBP Rule. Compliance with the MCL (80 ug/l) for TTHMs is									
determined by the Locational Running Annual Average.									
15 - These levels represent the range of all samples collected in compliance with the Unregulated Contaminates Monitoring Rule 4 (UCMR4)									
17 - These levels represent the range of all samples collected in compliance with the Unregulated Contaminates Monitoring Rule 4 (UCMR4)									
Definitions:									
ACTION LEVEL	AL	The concentration of a contar	ninant that, if exceeded	I, triggers treatment or other requirements that a water system must follow.					
MAXIMUM CONTAMINANT LEVEL	MCL	The highest level of a contam	inant that is allowed in	drinking water. MCLs are set as close to the MCLGs as feasible.					
MAXIMUM CONTAMINANT LEVEL GO	DAL MCLG	The level of a contaminant in	drinking water below w	hich there is no known or expected risk to health. MCLGs allow for a margin of safety.					
MAXIMUM RESIDUAL DISINFECTANT	LEVEL MRDL	The highest level of a disinfect microbial contaminants.	stant allowed in drinking	J water. There is convincing evidence that addition of a disinfectant is necessary for control of					
MAXIMUM RESIDUAL DISINFECTANT	LEVEL GOAL MRDLG	I he level of a drinking water of disinfectants to control microb	Jisinfectant below which bial contamination.	n there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of					
MILLIGRAMS PER LITER	mg/l	Corresponds to one part of lig	juid in one million parts	of liquid (parts per million - ppm).					
MICROGRAMS PER LITER	ug/l	Corresponds to one part of lig	juid in one billion parts	of liquid (parts per billion - ppb).					

Definitions:		
NEPHELOMETRIC TURBIDITY UNIT	NTU	A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.
Non-Detected	ND	Laboratory analysis indicates that the constituent is not present.
TREATMENT TECHNIQUE	TT	A required process intended to reduce the level of a contaminant in drinking.

WHAT DOES THIS INFORMATION MEAN?

As you can see by the table, our system only had the TTHM violation near the former county airport in Oriskany in May 2023. We have learned through our testing that other contaminants have been detected; however, these contaminants were detected below New York State requirements.

UNREGULATED CONTAMINANT INFORMATION

From 2018-2020, we are required to collect and analyze drinking water samples for the following unregulated contaminants: Cyanotoxins (Total microcystins, Anatoxin, Cylindrospermopsin), germanium, manganese, alpha-hexachlorocyclohexane, profenofos, chlorpyrifos, tebuconazole, dimethipin, total permethrin (cis & trans-), ethoprop, tribufos, oxyfluoren, HAA5, HAA6Br, HAA9, 1-butanol, 2-propen-1-ol, 2-methoxyethanol, butylated hydroxyanisole, o-toluidine, quinoline. We collected samples semi-monthly from August 1, 2018, through November 30, 2018, for cyanotoxins (8 total samples) from the entry point to the distribution system. The rest of the contaminants were sampled quarterly in June, September, & December 2019 and again in March 2020 per the EPA mandated schedule from either the source water, entry point, or pre-determined sites in the Distribution System. Detections are noted in the Table of Detected Contaminants. *You may obtain the monitoring results by calling Philip Tangorra, Director of Water Quality, at 315-792-0301.*

ADDITIONAL TESTING

In addition to the testing, we are required to perform; our water system voluntarily tests hundreds of additional substances and microscopic organisms to make certain our water is safe and of high quality. If you are interested in a more detailed report, contact the Water Quality Department at 315-792-0338; visit us on the web at <u>www.mvwa.us</u>. We'll be happy to answer any questions about MVWA and its Water Quality Department.

DOINEED TO TAKE SPECIAL PRECAUTIONS?

Although our drinking water met or exceeded state and federal regulations, some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800-426-4791).

IS OUR WATER SYSTEM MEETING OTHER RULES THAT GOVERN OPERATIONS?

Last year, our system was in general compliance with State drinking water operating, monitoring, and reporting requirements, except for the trihalomethane MCL violation at one site in May 2023.

CLOSING

To maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all our customers. The costs of these improvements may be reflected in the rate structure. Rate adjustments may be necessary to address these improvements.

Thank you for allowing us to continue to provide your family with quality drinking water this year. We ask that all our customers help us protect our water sources, which are the heart of our community and our way of life. Please call our office if you have questions.

WHY SAVE WATER AND HOW TO AVOID WASTING IT?

Although our system has an adequate amount of water to meet present and future demands, there are several reasons why it is important to conserve water:

- Saving water saves energy and some of the costs associated with both of these necessities of life;
- Saving water reduces the cost of energy required to pump water and the need to construct costly new wells, pumping systems and water towers; and
- Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential fire-fighting needs are met.

You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve water. Conservation tips include:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So, get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it up and you can save almost 6,000 gallons per year.
- Check toilets for leaks by putting a few drops of food coloring in the tank watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and you save more than 30,000 gallons a year.
- Use Heat Tape to protect your pipes from freezing. This will save water AND protect septic systems from overuse.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances, then check the meter after 15 minutes, if it moved, you have a leak.

DOINED TO TAKE SPECIAL PRECAUTIONS?

Some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800-426-4791).

LEAD INFORMATION

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. MVWA is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. Or please visit our website for additional information about lead in drinking water.

INFORMATION ON FLUORIDE ADDITION

Our system is one of the many drinking water systems in New York State that provides drinking water with a controlled, low level of fluoride for consumer dental health protection. According to the United States Centers for Disease Control, fluoride is very effective in preventing cavities when present in drinking water at a properly controlled level. To ensure that the fluoride supplement in your water provides optimal dental protection, we monitor fluoride levels on a daily basis to make sure fluoride is maintained at a target level of 0.7 mg/l (the CDC's "interim" target level). During the last year monitoring showed that fluoride levels in your water were within 0.1 mg/l of the target level for 99% of the time. None of the monitoring results showed fluoride at levels that approach the 2.2 mg/l MCL for fluoride. Our fluoride addition facility is designed and operated to provide drinking water with this beneficial fluoride treatment. Additional reliable information regarding fluoridation in public water systems can be found online at: http://www.cdc.gov/FLUORIDATION/ and http://www.cdc.gov/FLUORIDATION/

WATER TREATMENT PLANT OPERATIONS

In August of 2017, MVWA began a partnership with Veolia (formerly SUEZ) for the daily operation and maintenance of the Water Treatment Plant and related facilities. In 2022, we renewed this contract for an additional 10 years. This provides MVWA with long term on-site leadership and technical support. Further, Veolia continues to enhance employee health & safety for those staffing the WTP and provides additional perspectives to remain in compliance with regulations. This unique relationship has MVWA well positioned for the future.